39 research outputs found

    Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games.

    Get PDF

    How much control is enough? Optimizing fun with unreliable input

    Get PDF
    Brain-computer interfaces (BCI) provide a valuable new input modality within human- computer interaction systems, but like other body-based inputs, the system recognition of input commands is far from perfect. This raises important questions, such as: What level of control should such an interface be able to provide? What is the relationship between actual and perceived control? And in the case of applications for entertainment in which fun is an important part of user experience, should we even aim for perfect control, or is the optimum elsewhere? In this experiment the user plays a simple game in which a hamster has to be guided to the exit of a maze, in which the amount of control the user has over the hamster is varied. The variation of control through confusion matrices makes it possible to simulate the experience of using a BCI, while using the traditional keyboard for input. After each session the user �lled out a short questionnaire on fun and perceived control. Analysis of the data showed that the perceived control of the user could largely be explained by the amount of control in the respective session. As expected, user frustration decreases with increasing control. Moreover, the results indicate that the relation between fun and control is not linear. Although in the beginning fun does increase with improved control, the level of fun drops again just before perfect control is reached. This poses new insights for developers of games wanting to incorporate some form of BCI in their game: for creating a fun game, unreliable input can be used to create a challenge for the user

    User Experience Evaluation in BCI: Filling the Gap

    Get PDF
    Brain-computer interface (BCI) systems can improve the user experience (UX) when used in entertainment technologies. Improved UX can enhance user acceptance, improve quality of life and also increase the system performance of a BCI system. Therefore, the evaluation of UX is essential in BCI research. However, BCI systems are generally evaluated according to the system aspect only so there is no methodology to evaluate UX in BCI systems. This paper gives an overview of such methods from the human-computer interaction field and discusses their possible uses in BCI research

    Human-Computer Interaction for BCI Games: Usability and User Experience

    Get PDF
    Brain-computer interfaces (BCI) come with a lot of issues, such as delays, bad recognition, long training times, and cumbersome hardware. Gamers are a large potential target group for this new interaction modality, but why would healthy subjects want to use it? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will need to be taken into account when designing such systems. This paper discusses the consequences of applying knowledge from Human-Computer Interaction (HCI) to the design of BCI for games. The integration of HCI with BCI is illustrated by research examples and showcases, intended to take this promising technology out of the lab. Future research needs to move beyond feasibility tests, to prove that BCI is also applicable in realistic, real-world settings

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    Perception and manipulation of game control

    Get PDF
    Humans have humorous conversations and interactions. Nowadays our real life existence is integrated with our life in social media, videogames, mixed reality and physical environments that sense our activities and that can adapt appearance and properties due to our activities. There are other inhabitants in these environments, not only human, but also virtual agents and social robots with which we interact and who decide about their participation in activities. In this paper we look at designing humor and humor opportunities in such environments, providing them with a sense of humor, and able to recognize opportunities to generate humorous interactions or events on the fly. Opportunities, made possible by introducing incongruities, can be exploited by the environment itself, or they can be communicated to its inhabitants

    BNCI Horizon 2020 - Towards a Roadmap for Brain/Neural Computer Interaction

    Get PDF
    In this paper, we present BNCI Horizon 2020, an EU Coordination and Support Action (CSA) that will provide a roadmap for brain-computer interaction research for the next years, starting in 2013, and aiming at research efforts until 2020 and beyond. The project is a successor of the earlier EU-funded Future BNCI CSA that started in 2010 and produced a roadmap for a shorter time period. We present how we, a consortium of the main European BCI research groups as well as companies and end user representatives, expect to tackle the problem of designing a roadmap for BCI research. In this paper, we define the field with its recent developments, in particular by considering publications and EU-funded research projects, and we discuss how we plan to involve research groups, companies, and user groups in our effort to pave the way for useful and fruitful EU-funded BCI research for the next ten years

    Improving BCI Performance after Classification

    Get PDF
    Brain-computer interfaces offer a valuable input modality, which unfortunately comes also with a high degree of uncertainty. There are simple methods to improve detection accuracy after the incoming brain activity has already been classified, which can be divided into (1) gathering additional evidence from other sources of information, and (2) transforming the unstable classification results to be more easy to control. The methods described are easy to implement, but it is essential to apply them in the right way. This paper provides an overview of the different techniques, showing where to apply them and comparing the effects. Detection accuracy is important, but there are trade-offs to consider. Future research should investigate the effectiveness of these methods in their context of use, as well as the optimal settings to obtain the right balance between functionality and meeting the user's expectations for maximum acceptance
    corecore